| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumsplitf.ph |
|- F/ k ph |
| 2 |
|
fsumsplitf.ab |
|- ( ph -> ( A i^i B ) = (/) ) |
| 3 |
|
fsumsplitf.u |
|- ( ph -> U = ( A u. B ) ) |
| 4 |
|
fsumsplitf.fi |
|- ( ph -> U e. Fin ) |
| 5 |
|
fsumsplitf.c |
|- ( ( ph /\ k e. U ) -> C e. CC ) |
| 6 |
|
csbeq1a |
|- ( k = j -> C = [_ j / k ]_ C ) |
| 7 |
|
nfcv |
|- F/_ j C |
| 8 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ C |
| 9 |
6 7 8
|
cbvsum |
|- sum_ k e. U C = sum_ j e. U [_ j / k ]_ C |
| 10 |
9
|
a1i |
|- ( ph -> sum_ k e. U C = sum_ j e. U [_ j / k ]_ C ) |
| 11 |
|
nfv |
|- F/ k j e. U |
| 12 |
1 11
|
nfan |
|- F/ k ( ph /\ j e. U ) |
| 13 |
8
|
nfel1 |
|- F/ k [_ j / k ]_ C e. CC |
| 14 |
12 13
|
nfim |
|- F/ k ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) |
| 15 |
|
eleq1w |
|- ( k = j -> ( k e. U <-> j e. U ) ) |
| 16 |
15
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. U ) <-> ( ph /\ j e. U ) ) ) |
| 17 |
6
|
eleq1d |
|- ( k = j -> ( C e. CC <-> [_ j / k ]_ C e. CC ) ) |
| 18 |
16 17
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. U ) -> C e. CC ) <-> ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) ) ) |
| 19 |
14 18 5
|
chvarfv |
|- ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) |
| 20 |
2 3 4 19
|
fsumsplit |
|- ( ph -> sum_ j e. U [_ j / k ]_ C = ( sum_ j e. A [_ j / k ]_ C + sum_ j e. B [_ j / k ]_ C ) ) |
| 21 |
|
csbeq1a |
|- ( j = k -> [_ j / k ]_ C = [_ k / j ]_ [_ j / k ]_ C ) |
| 22 |
|
csbcow |
|- [_ k / j ]_ [_ j / k ]_ C = [_ k / k ]_ C |
| 23 |
|
csbid |
|- [_ k / k ]_ C = C |
| 24 |
22 23
|
eqtri |
|- [_ k / j ]_ [_ j / k ]_ C = C |
| 25 |
21 24
|
eqtrdi |
|- ( j = k -> [_ j / k ]_ C = C ) |
| 26 |
25 8 7
|
cbvsum |
|- sum_ j e. A [_ j / k ]_ C = sum_ k e. A C |
| 27 |
25 8 7
|
cbvsum |
|- sum_ j e. B [_ j / k ]_ C = sum_ k e. B C |
| 28 |
26 27
|
oveq12i |
|- ( sum_ j e. A [_ j / k ]_ C + sum_ j e. B [_ j / k ]_ C ) = ( sum_ k e. A C + sum_ k e. B C ) |
| 29 |
28
|
a1i |
|- ( ph -> ( sum_ j e. A [_ j / k ]_ C + sum_ j e. B [_ j / k ]_ C ) = ( sum_ k e. A C + sum_ k e. B C ) ) |
| 30 |
10 20 29
|
3eqtrd |
|- ( ph -> sum_ k e. U C = ( sum_ k e. A C + sum_ k e. B C ) ) |