Metamath Proof Explorer


Theorem fsumsplit1

Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fsumsplit1.kph k φ
fsumsplit1.kd _ k D
fsumsplit1.a φ A Fin
fsumsplit1.b φ k A B
fsumsplit1.c φ C A
fsumsplit1.bd k = C B = D
Assertion fsumsplit1 φ k A B = D + k A C B

Proof

Step Hyp Ref Expression
1 fsumsplit1.kph k φ
2 fsumsplit1.kd _ k D
3 fsumsplit1.a φ A Fin
4 fsumsplit1.b φ k A B
5 fsumsplit1.c φ C A
6 fsumsplit1.bd k = C B = D
7 uncom A C C = C A C
8 7 a1i φ A C C = C A C
9 5 snssd φ C A
10 undif C A C A C = A
11 9 10 sylib φ C A C = A
12 eqidd φ A = A
13 8 11 12 3eqtrrd φ A = A C C
14 13 sumeq1d φ k A B = k A C C B
15 diffi A Fin A C Fin
16 3 15 syl φ A C Fin
17 neldifsnd φ ¬ C A C
18 simpl φ k A C φ
19 eldifi k A C k A
20 19 adantl φ k A C k A
21 18 20 4 syl2anc φ k A C B
22 2 a1i φ _ k D
23 simpr φ k = C k = C
24 23 6 syl φ k = C B = D
25 1 22 5 24 csbiedf φ C / k B = D
26 25 eqcomd φ D = C / k B
27 5 ancli φ φ C A
28 nfcv _ k C
29 nfv k C A
30 1 29 nfan k φ C A
31 28 nfcsb1 _ k C / k B
32 nfcv _ k
33 31 32 nfel k C / k B
34 30 33 nfim k φ C A C / k B
35 eleq1 k = C k A C A
36 35 anbi2d k = C φ k A φ C A
37 csbeq1a k = C B = C / k B
38 37 eleq1d k = C B C / k B
39 36 38 imbi12d k = C φ k A B φ C A C / k B
40 28 34 39 4 vtoclgf C A φ C A C / k B
41 5 27 40 sylc φ C / k B
42 26 41 eqeltrd φ D
43 1 2 16 5 17 21 6 42 fsumsplitsn φ k A C C B = k A C B + D
44 1 16 21 fsumclf φ k A C B
45 44 42 addcomd φ k A C B + D = D + k A C B
46 14 43 45 3eqtrd φ k A B = D + k A C B