| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumsplit1.kph |
|
| 2 |
|
fsumsplit1.kd |
|
| 3 |
|
fsumsplit1.a |
|
| 4 |
|
fsumsplit1.b |
|
| 5 |
|
fsumsplit1.c |
|
| 6 |
|
fsumsplit1.bd |
|
| 7 |
|
uncom |
|
| 8 |
7
|
a1i |
|
| 9 |
5
|
snssd |
|
| 10 |
|
undif |
|
| 11 |
9 10
|
sylib |
|
| 12 |
|
eqidd |
|
| 13 |
8 11 12
|
3eqtrrd |
|
| 14 |
13
|
sumeq1d |
|
| 15 |
|
diffi |
|
| 16 |
3 15
|
syl |
|
| 17 |
|
neldifsnd |
|
| 18 |
|
simpl |
|
| 19 |
|
eldifi |
|
| 20 |
19
|
adantl |
|
| 21 |
18 20 4
|
syl2anc |
|
| 22 |
2
|
a1i |
|
| 23 |
|
simpr |
|
| 24 |
23 6
|
syl |
|
| 25 |
1 22 5 24
|
csbiedf |
|
| 26 |
25
|
eqcomd |
|
| 27 |
5
|
ancli |
|
| 28 |
|
nfcv |
|
| 29 |
|
nfv |
|
| 30 |
1 29
|
nfan |
|
| 31 |
28
|
nfcsb1 |
|
| 32 |
|
nfcv |
|
| 33 |
31 32
|
nfel |
|
| 34 |
30 33
|
nfim |
|
| 35 |
|
eleq1 |
|
| 36 |
35
|
anbi2d |
|
| 37 |
|
csbeq1a |
|
| 38 |
37
|
eleq1d |
|
| 39 |
36 38
|
imbi12d |
|
| 40 |
28 34 39 4
|
vtoclgf |
|
| 41 |
5 27 40
|
sylc |
|
| 42 |
26 41
|
eqeltrd |
|
| 43 |
1 2 16 5 17 21 6 42
|
fsumsplitsn |
|
| 44 |
1 16 21
|
fsumclf |
|
| 45 |
44 42
|
addcomd |
|
| 46 |
14 43 45
|
3eqtrd |
|