Metamath Proof Explorer


Theorem supclt

Description: Closure of supremum. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion supclt ROrAxAyB¬xRyyAyRxzByRzsupBARA

Proof

Step Hyp Ref Expression
1 simpl ROrAxAyB¬xRyyAyRxzByRzROrA
2 simpr ROrAxAyB¬xRyyAyRxzByRzxAyB¬xRyyAyRxzByRz
3 1 2 supcl ROrAxAyB¬xRyyAyRxzByRzsupBARA