Metamath Proof Explorer


Theorem supexd

Description: A supremum is a set. (Contributed by NM, 22-May-1999) (Revised by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis supmo.1 φROrA
Assertion supexd φsupBARV

Proof

Step Hyp Ref Expression
1 supmo.1 φROrA
2 df-sup supBAR=xA|yB¬xRyyAyRxzByRz
3 1 supmo φ*xAyB¬xRyyAyRxzByRz
4 rmorabex *xAyB¬xRyyAyRxzByRzxA|yB¬xRyyAyRxzByRzV
5 uniexg xA|yB¬xRyyAyRxzByRzVxA|yB¬xRyyAyRxzByRzV
6 3 4 5 3syl φxA|yB¬xRyyAyRxzByRzV
7 2 6 eqeltrid φsupBARV