Metamath Proof Explorer


Theorem suppssdm

Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019)

Ref Expression
Assertion suppssdm FsuppZdomF

Proof

Step Hyp Ref Expression
1 suppval FVZVFsuppZ=idomF|FiZ
2 ssrab2 idomF|FiZdomF
3 1 2 eqsstrdi FVZVFsuppZdomF
4 supp0prc ¬FVZVFsuppZ=
5 0ss domF
6 4 5 eqsstrdi ¬FVZVFsuppZdomF
7 3 6 pm2.61i FsuppZdomF