Metamath Proof Explorer


Theorem suppvalbr

Description: The value of the operation constructing the support of a function expressed by binary relations. (Contributed by AV, 7-Apr-2019)

Ref Expression
Assertion suppvalbr RVZWRsuppZ=x|yxRyyxRyyZ

Proof

Step Hyp Ref Expression
1 df-rab xdomR|RxZ=x|xdomRRxZ
2 vex xV
3 2 eldm xdomRyxRy
4 imasng xVRx=y|xRy
5 4 elv Rx=y|xRy
6 5 neeq1i RxZy|xRyZ
7 df-sn Z=y|y=Z
8 7 neeq2i y|xRyZy|xRyy|y=Z
9 nabbib y|xRyy|y=ZyxRy¬y=Z
10 6 8 9 3bitri RxZyxRy¬y=Z
11 3 10 anbi12i xdomRRxZyxRyyxRy¬y=Z
12 11 abbii x|xdomRRxZ=x|yxRyyxRy¬y=Z
13 1 12 eqtr2i x|yxRyyxRy¬y=Z=xdomR|RxZ
14 13 a1i RVZWx|yxRyyxRy¬y=Z=xdomR|RxZ
15 df-ne yZ¬y=Z
16 15 bibi2i xRyyZxRy¬y=Z
17 16 exbii yxRyyZyxRy¬y=Z
18 17 anbi2i yxRyyxRyyZyxRyyxRy¬y=Z
19 18 abbii x|yxRyyxRyyZ=x|yxRyyxRy¬y=Z
20 19 a1i RVZWx|yxRyyxRyyZ=x|yxRyyxRy¬y=Z
21 suppval RVZWRsuppZ=xdomR|RxZ
22 14 20 21 3eqtr4rd RVZWRsuppZ=x|yxRyyxRyyZ