Metamath Proof Explorer


Theorem swrdfv

Description: A symbol in an extracted subword, indexed using the subword's indices. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Assertion swrdfv SWordAF0LL0SX0..^LFSsubstrFLX=SX+F

Proof

Step Hyp Ref Expression
1 swrdval2 SWordAF0LL0SSsubstrFL=x0..^LFSx+F
2 1 fveq1d SWordAF0LL0SSsubstrFLX=x0..^LFSx+FX
3 fvoveq1 x=XSx+F=SX+F
4 eqid x0..^LFSx+F=x0..^LFSx+F
5 fvex SX+FV
6 3 4 5 fvmpt X0..^LFx0..^LFSx+FX=SX+F
7 2 6 sylan9eq SWordAF0LL0SX0..^LFSsubstrFLX=SX+F