Metamath Proof Explorer


Theorem swrdfv0

Description: The first symbol in an extracted subword. (Contributed by AV, 27-Apr-2022)

Ref Expression
Assertion swrdfv0 SWordAF0..^LL0SSsubstrFL0=SF

Proof

Step Hyp Ref Expression
1 elfzofz F0..^LF0L
2 1 3anim2i SWordAF0..^LL0SSWordAF0LL0S
3 fzonnsub F0..^LLF
4 3 3ad2ant2 SWordAF0..^LL0SLF
5 lbfzo0 00..^LFLF
6 4 5 sylibr SWordAF0..^LL0S00..^LF
7 swrdfv SWordAF0LL0S00..^LFSsubstrFL0=S0+F
8 2 6 7 syl2anc SWordAF0..^LL0SSsubstrFL0=S0+F
9 elfzoelz F0..^LF
10 9 zcnd F0..^LF
11 10 addlidd F0..^L0+F=F
12 11 fveq2d F0..^LS0+F=SF
13 12 3ad2ant2 SWordAF0..^LL0SS0+F=SF
14 8 13 eqtrd SWordAF0..^LL0SSsubstrFL0=SF