Metamath Proof Explorer


Theorem syl211anc

Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)

Ref Expression
Hypotheses syl3anc.1 φψ
syl3anc.2 φχ
syl3anc.3 φθ
syl3Xanc.4 φτ
syl211anc.5 ψχθτη
Assertion syl211anc φη

Proof

Step Hyp Ref Expression
1 syl3anc.1 φψ
2 syl3anc.2 φχ
3 syl3anc.3 φθ
4 syl3Xanc.4 φτ
5 syl211anc.5 ψχθτη
6 1 2 jca φψχ
7 6 3 4 5 syl3anc φη