Metamath Proof Explorer


Theorem syl2an3an

Description: syl3an with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016)

Ref Expression
Hypotheses syl2an3an.1 φψ
syl2an3an.2 φχ
syl2an3an.3 θτ
syl2an3an.4 ψχτη
Assertion syl2an3an φθη

Proof

Step Hyp Ref Expression
1 syl2an3an.1 φψ
2 syl2an3an.2 φχ
3 syl2an3an.3 θτ
4 syl2an3an.4 ψχτη
5 1 2 3 4 syl3an φφθη
6 5 3anidm12 φθη