Metamath Proof Explorer


Theorem syl3an3b

Description: A syllogism inference. (Contributed by NM, 22-Aug-1995)

Ref Expression
Hypotheses syl3an3b.1 φθ
syl3an3b.2 ψχθτ
Assertion syl3an3b ψχφτ

Proof

Step Hyp Ref Expression
1 syl3an3b.1 φθ
2 syl3an3b.2 ψχθτ
3 1 biimpi φθ
4 3 2 syl3an3 ψχφτ