Metamath Proof Explorer


Theorem syl6ibr

Description: A mixed syllogism inference from a nested implication and a biconditional. Useful for substituting an embedded consequent with a definition. (Contributed by NM, 10-Jan-1993)

Ref Expression
Hypotheses syl6ibr.1 φψχ
syl6ibr.2 θχ
Assertion syl6ibr φψθ

Proof

Step Hyp Ref Expression
1 syl6ibr.1 φψχ
2 syl6ibr.2 θχ
3 2 biimpri χθ
4 1 3 syl6 φψθ