Metamath Proof Explorer


Theorem sylbi

Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypotheses sylbi.1 φψ
sylbi.2 ψχ
Assertion sylbi φχ

Proof

Step Hyp Ref Expression
1 sylbi.1 φψ
2 sylbi.2 ψχ
3 1 biimpi φψ
4 3 2 syl φχ