Description: Symmetric difference is associative. (Contributed by Scott Fenton, 24-Apr-2012) (Proof shortened by BJ, 7-Sep-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | symdifass | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsymdifxor | |
|
2 | elsymdifxor | |
|
3 | biid | |
|
4 | 2 3 | xorbi12i | |
5 | xorass | |
|
6 | biid | |
|
7 | elsymdifxor | |
|
8 | 7 | bicomi | |
9 | 6 8 | xorbi12i | |
10 | 4 5 9 | 3bitri | |
11 | elsymdifxor | |
|
12 | 11 | bicomi | |
13 | 1 10 12 | 3bitri | |
14 | 13 | eqriv | |