Metamath Proof Explorer


Theorem symdifass

Description: Symmetric difference is associative. (Contributed by Scott Fenton, 24-Apr-2012) (Proof shortened by BJ, 7-Sep-2022)

Ref Expression
Assertion symdifass ABC=ABC

Proof

Step Hyp Ref Expression
1 elsymdifxor xABCxABxC
2 elsymdifxor xABxAxB
3 biid xCxC
4 2 3 xorbi12i xABxCxAxBxC
5 xorass xAxBxCxAxBxC
6 biid xAxA
7 elsymdifxor xBCxBxC
8 7 bicomi xBxCxBC
9 6 8 xorbi12i xAxBxCxAxBC
10 4 5 9 3bitri xABxCxAxBC
11 elsymdifxor xABCxAxBC
12 11 bicomi xAxBCxABC
13 1 10 12 3bitri xABCxABC
14 13 eqriv ABC=ABC