Metamath Proof Explorer


Theorem symgbas0

Description: The base set of the symmetric group on the empty set is the singleton containing the empty set. (Contributed by AV, 27-Feb-2019)

Ref Expression
Assertion symgbas0 BaseSymGrp=

Proof

Step Hyp Ref Expression
1 eqid =
2 f1o00 f:1-1 ontof==
3 1 2 mpbiran2 f:1-1 ontof=
4 3 abbii f|f:1-1 onto=f|f=
5 eqid SymGrp=SymGrp
6 eqid BaseSymGrp=BaseSymGrp
7 5 6 symgbas BaseSymGrp=f|f:1-1 onto
8 df-sn =f|f=
9 4 7 8 3eqtr4i BaseSymGrp=