Metamath Proof Explorer


Theorem symgbas0

Description: The base set of the symmetric group on the empty set is the singleton containing the empty set. (Contributed by AV, 27-Feb-2019)

Ref Expression
Assertion symgbas0 Base SymGrp =

Proof

Step Hyp Ref Expression
1 eqid =
2 f1o00 f : 1-1 onto f = =
3 1 2 mpbiran2 f : 1-1 onto f =
4 3 abbii f | f : 1-1 onto = f | f =
5 eqid SymGrp = SymGrp
6 eqid Base SymGrp = Base SymGrp
7 5 6 symgbas Base SymGrp = f | f : 1-1 onto
8 df-sn = f | f =
9 4 7 8 3eqtr4i Base SymGrp =