Metamath Proof Explorer


Theorem symgbasexOLD

Description: Obsolete as of 8-Aug-2024. B e. _V follows immediatly from fvex . (Contributed by AV, 30-Mar-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses symgbas.1 G=SymGrpA
symgbas.2 B=BaseG
Assertion symgbasexOLD AVBV

Proof

Step Hyp Ref Expression
1 symgbas.1 G=SymGrpA
2 symgbas.2 B=BaseG
3 1 2 symgbas B=f|f:A1-1 ontoA
4 permsetexOLD AVf|f:A1-1 ontoAV
5 3 4 eqeltrid AVBV