Metamath Proof Explorer


Theorem tbwlem1

Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion tbwlem1 φψχψφχ

Proof

Step Hyp Ref Expression
1 tbw-ax2 ψψχψ
2 tbw-ax1 ψχψψχψχχ
3 1 2 tbwsyl ψψχψχχ
4 tbw-ax1 ψχψχχψχχχψχχ
5 tbw-ax3 ψχχχψχχψχχ
6 4 5 tbwsyl ψχψχχψχχ
7 3 6 tbwsyl ψψχχ
8 tbw-ax1 φψχψχχφχ
9 tbw-ax1 ψψχχψχχφχψφχ
10 7 8 9 mpsyl φψχψφχ