Metamath Proof Explorer


Theorem tbwlem2

Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion tbwlem2 φψφχθψθ

Proof

Step Hyp Ref Expression
1 tbw-ax4 χ
2 tbw-ax1 ψχψχ
3 tbwlem1 ψχψχχψψχ
4 2 3 ax-mp χψψχ
5 1 4 ax-mp ψψχ
6 tbwlem1 ψψχψψχ
7 5 6 ax-mp ψψχ
8 tbw-ax1 φψψχφχ
9 tbw-ax1 ψψχψχφχψφχ
10 7 8 9 mpsyl φψψφχ
11 tbw-ax1 ψφχφχθψθ
12 10 11 tbwsyl φψφχθψθ