| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tbw-ax1 |
|- ( ( ph -> ( ps -> F. ) ) -> ( ( ( ps -> F. ) -> ch ) -> ( ph -> ch ) ) ) |
| 2 |
|
tbw-ax4 |
|- ( F. -> ch ) |
| 3 |
|
tbw-ax1 |
|- ( ( ps -> F. ) -> ( ( F. -> ch ) -> ( ps -> ch ) ) ) |
| 4 |
|
tbwlem1 |
|- ( ( ( ps -> F. ) -> ( ( F. -> ch ) -> ( ps -> ch ) ) ) -> ( ( F. -> ch ) -> ( ( ps -> F. ) -> ( ps -> ch ) ) ) ) |
| 5 |
3 4
|
ax-mp |
|- ( ( F. -> ch ) -> ( ( ps -> F. ) -> ( ps -> ch ) ) ) |
| 6 |
2 5
|
ax-mp |
|- ( ( ps -> F. ) -> ( ps -> ch ) ) |
| 7 |
|
tbwlem1 |
|- ( ( ( ps -> F. ) -> ( ps -> ch ) ) -> ( ps -> ( ( ps -> F. ) -> ch ) ) ) |
| 8 |
6 7
|
ax-mp |
|- ( ps -> ( ( ps -> F. ) -> ch ) ) |
| 9 |
|
tbw-ax1 |
|- ( ( ps -> ( ( ps -> F. ) -> ch ) ) -> ( ( ( ( ps -> F. ) -> ch ) -> ( ph -> ch ) ) -> ( ps -> ( ph -> ch ) ) ) ) |
| 10 |
8 9
|
ax-mp |
|- ( ( ( ( ps -> F. ) -> ch ) -> ( ph -> ch ) ) -> ( ps -> ( ph -> ch ) ) ) |
| 11 |
1 10
|
tbwsyl |
|- ( ( ph -> ( ps -> F. ) ) -> ( ps -> ( ph -> ch ) ) ) |
| 12 |
|
tbw-ax1 |
|- ( ( ps -> ( ph -> ch ) ) -> ( ( ( ph -> ch ) -> th ) -> ( ps -> th ) ) ) |
| 13 |
11 12
|
tbwsyl |
|- ( ( ph -> ( ps -> F. ) ) -> ( ( ( ph -> ch ) -> th ) -> ( ps -> th ) ) ) |