Step |
Hyp |
Ref |
Expression |
1 |
|
tbw-ax4 |
|- ( F. -> ch ) |
2 |
|
tbw-ax1 |
|- ( ( ps -> F. ) -> ( ( F. -> ch ) -> ( ps -> ch ) ) ) |
3 |
|
tbwlem1 |
|- ( ( ( ps -> F. ) -> ( ( F. -> ch ) -> ( ps -> ch ) ) ) -> ( ( F. -> ch ) -> ( ( ps -> F. ) -> ( ps -> ch ) ) ) ) |
4 |
2 3
|
ax-mp |
|- ( ( F. -> ch ) -> ( ( ps -> F. ) -> ( ps -> ch ) ) ) |
5 |
1 4
|
ax-mp |
|- ( ( ps -> F. ) -> ( ps -> ch ) ) |
6 |
|
tbwlem1 |
|- ( ( ( ps -> F. ) -> ( ps -> ch ) ) -> ( ps -> ( ( ps -> F. ) -> ch ) ) ) |
7 |
5 6
|
ax-mp |
|- ( ps -> ( ( ps -> F. ) -> ch ) ) |
8 |
|
tbw-ax1 |
|- ( ( ph -> ( ps -> F. ) ) -> ( ( ( ps -> F. ) -> ch ) -> ( ph -> ch ) ) ) |
9 |
|
tbw-ax1 |
|- ( ( ps -> ( ( ps -> F. ) -> ch ) ) -> ( ( ( ( ps -> F. ) -> ch ) -> ( ph -> ch ) ) -> ( ps -> ( ph -> ch ) ) ) ) |
10 |
7 8 9
|
mpsyl |
|- ( ( ph -> ( ps -> F. ) ) -> ( ps -> ( ph -> ch ) ) ) |
11 |
|
tbw-ax1 |
|- ( ( ps -> ( ph -> ch ) ) -> ( ( ( ph -> ch ) -> th ) -> ( ps -> th ) ) ) |
12 |
10 11
|
tbwsyl |
|- ( ( ph -> ( ps -> F. ) ) -> ( ( ( ph -> ch ) -> th ) -> ( ps -> th ) ) ) |