| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tbw-ax3 |
|- ( ( ( ph -> F. ) -> ph ) -> ph ) |
| 2 |
|
tbw-ax2 |
|- ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ( ( ( ph -> F. ) -> ph ) -> ph ) ) ) |
| 3 |
|
tbw-ax1 |
|- ( ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ( ( ( ph -> F. ) -> ph ) -> ph ) ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) ) ) |
| 4 |
2 3
|
tbwsyl |
|- ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) ) ) |
| 5 |
1 4
|
ax-mp |
|- ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) ) |
| 6 |
|
tbw-ax1 |
|- ( ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) ) -> ( ( ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) -> ps ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) ) ) |
| 7 |
|
tbw-ax3 |
|- ( ( ( ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) -> ps ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) ) |
| 8 |
6 7
|
tbwsyl |
|- ( ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) ) |
| 9 |
5 8
|
ax-mp |
|- ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) |