Metamath Proof Explorer


Theorem tbwlem3

Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion tbwlem3
|- ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps )

Proof

Step Hyp Ref Expression
1 tbw-ax3
 |-  ( ( ( ph -> F. ) -> ph ) -> ph )
2 tbw-ax2
 |-  ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ( ( ( ph -> F. ) -> ph ) -> ph ) ) )
3 tbw-ax1
 |-  ( ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ( ( ( ph -> F. ) -> ph ) -> ph ) ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) ) )
4 2 3 tbwsyl
 |-  ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) ) )
5 1 4 ax-mp
 |-  ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) )
6 tbw-ax1
 |-  ( ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) ) -> ( ( ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) -> ps ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) ) )
7 tbw-ax3
 |-  ( ( ( ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) -> ps ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) )
8 6 7 tbwsyl
 |-  ( ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) ) -> ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps ) )
9 5 8 ax-mp
 |-  ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ps ) -> ps )