| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tbw-ax3 |
⊢ ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) |
| 2 |
|
tbw-ax2 |
⊢ ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) ) ) |
| 3 |
|
tbw-ax1 |
⊢ ( ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) ) → ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ) ) |
| 4 |
2 3
|
tbwsyl |
⊢ ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ) ) |
| 5 |
1 4
|
ax-mp |
⊢ ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ) |
| 6 |
|
tbw-ax1 |
⊢ ( ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ) → ( ( ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜓 ) → ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ) ) |
| 7 |
|
tbw-ax3 |
⊢ ( ( ( ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜓 ) → ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ) → ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ) |
| 8 |
6 7
|
tbwsyl |
⊢ ( ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ) → ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ) |
| 9 |
5 8
|
ax-mp |
⊢ ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) |