Step |
Hyp |
Ref |
Expression |
1 |
|
tbw-ax4 |
⊢ ( ⊥ → ⊥ ) |
2 |
|
tbw-ax1 |
⊢ ( ( 𝜓 → ⊥ ) → ( ( ⊥ → ⊥ ) → ( 𝜓 → ⊥ ) ) ) |
3 |
|
tbwlem1 |
⊢ ( ( ( 𝜓 → ⊥ ) → ( ( ⊥ → ⊥ ) → ( 𝜓 → ⊥ ) ) ) → ( ( ⊥ → ⊥ ) → ( ( 𝜓 → ⊥ ) → ( 𝜓 → ⊥ ) ) ) ) |
4 |
2 3
|
ax-mp |
⊢ ( ( ⊥ → ⊥ ) → ( ( 𝜓 → ⊥ ) → ( 𝜓 → ⊥ ) ) ) |
5 |
1 4
|
ax-mp |
⊢ ( ( 𝜓 → ⊥ ) → ( 𝜓 → ⊥ ) ) |
6 |
|
tbwlem1 |
⊢ ( ( ( 𝜓 → ⊥ ) → ( 𝜓 → ⊥ ) ) → ( 𝜓 → ( ( 𝜓 → ⊥ ) → ⊥ ) ) ) |
7 |
5 6
|
ax-mp |
⊢ ( 𝜓 → ( ( 𝜓 → ⊥ ) → ⊥ ) ) |
8 |
|
tbw-ax1 |
⊢ ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜓 → ( ( 𝜓 → ⊥ ) → ⊥ ) ) → ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) ) ) |
9 |
|
tbwlem1 |
⊢ ( ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜓 → ( ( 𝜓 → ⊥ ) → ⊥ ) ) → ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) ) ) → ( ( 𝜓 → ( ( 𝜓 → ⊥ ) → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) ) ) ) |
10 |
8 9
|
ax-mp |
⊢ ( ( 𝜓 → ( ( 𝜓 → ⊥ ) → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) ) ) |
11 |
7 10
|
ax-mp |
⊢ ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) ) |
12 |
|
tbwlem2 |
⊢ ( ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) → ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → ( ( 𝜓 → ⊥ ) → 𝜑 ) ) ) |
13 |
|
tbwlem3 |
⊢ ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → ( ( 𝜓 → ⊥ ) → 𝜑 ) ) → ( ( 𝜓 → ⊥ ) → 𝜑 ) ) |
14 |
12 13
|
tbwsyl |
⊢ ( ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) → ( ( 𝜓 → ⊥ ) → 𝜑 ) ) |
15 |
11 14
|
tbwsyl |
⊢ ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜓 → ⊥ ) → 𝜑 ) ) |