| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tbw-ax4 |
⊢ ( ⊥ → ⊥ ) |
| 2 |
|
tbw-ax1 |
⊢ ( ( 𝜓 → ⊥ ) → ( ( ⊥ → ⊥ ) → ( 𝜓 → ⊥ ) ) ) |
| 3 |
|
tbwlem1 |
⊢ ( ( ( 𝜓 → ⊥ ) → ( ( ⊥ → ⊥ ) → ( 𝜓 → ⊥ ) ) ) → ( ( ⊥ → ⊥ ) → ( ( 𝜓 → ⊥ ) → ( 𝜓 → ⊥ ) ) ) ) |
| 4 |
2 3
|
ax-mp |
⊢ ( ( ⊥ → ⊥ ) → ( ( 𝜓 → ⊥ ) → ( 𝜓 → ⊥ ) ) ) |
| 5 |
1 4
|
ax-mp |
⊢ ( ( 𝜓 → ⊥ ) → ( 𝜓 → ⊥ ) ) |
| 6 |
|
tbwlem1 |
⊢ ( ( ( 𝜓 → ⊥ ) → ( 𝜓 → ⊥ ) ) → ( 𝜓 → ( ( 𝜓 → ⊥ ) → ⊥ ) ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( 𝜓 → ( ( 𝜓 → ⊥ ) → ⊥ ) ) |
| 8 |
|
tbw-ax1 |
⊢ ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜓 → ( ( 𝜓 → ⊥ ) → ⊥ ) ) → ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) ) ) |
| 9 |
|
tbwlem1 |
⊢ ( ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜓 → ( ( 𝜓 → ⊥ ) → ⊥ ) ) → ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) ) ) → ( ( 𝜓 → ( ( 𝜓 → ⊥ ) → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) ) ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( ( 𝜓 → ( ( 𝜓 → ⊥ ) → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) ) ) |
| 11 |
7 10
|
ax-mp |
⊢ ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) ) |
| 12 |
|
tbwlem2 |
⊢ ( ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) → ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → ( ( 𝜓 → ⊥ ) → 𝜑 ) ) ) |
| 13 |
|
tbwlem3 |
⊢ ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → ( ( 𝜓 → ⊥ ) → 𝜑 ) ) → ( ( 𝜓 → ⊥ ) → 𝜑 ) ) |
| 14 |
12 13
|
tbwsyl |
⊢ ( ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) → ( ( 𝜓 → ⊥ ) → 𝜑 ) ) |
| 15 |
11 14
|
tbwsyl |
⊢ ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜓 → ⊥ ) → 𝜑 ) ) |