Metamath Proof Explorer


Theorem tbwlem4

Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion tbwlem4 φ ψ ψ φ

Proof

Step Hyp Ref Expression
1 tbw-ax4
2 tbw-ax1 ψ ψ
3 tbwlem1 ψ ψ ψ ψ
4 2 3 ax-mp ψ ψ
5 1 4 ax-mp ψ ψ
6 tbwlem1 ψ ψ ψ ψ
7 5 6 ax-mp ψ ψ
8 tbw-ax1 φ ψ ψ ψ φ ψ
9 tbwlem1 φ ψ ψ ψ φ ψ ψ ψ φ ψ φ ψ
10 8 9 ax-mp ψ ψ φ ψ φ ψ
11 7 10 ax-mp φ ψ φ ψ
12 tbwlem2 φ ψ φ φ φ ψ φ
13 tbwlem3 φ φ φ ψ φ ψ φ
14 12 13 tbwsyl φ ψ ψ φ
15 11 14 tbwsyl φ ψ ψ φ