Step |
Hyp |
Ref |
Expression |
1 |
|
tbw-ax4 |
|- ( F. -> F. ) |
2 |
|
tbw-ax1 |
|- ( ( ps -> F. ) -> ( ( F. -> F. ) -> ( ps -> F. ) ) ) |
3 |
|
tbwlem1 |
|- ( ( ( ps -> F. ) -> ( ( F. -> F. ) -> ( ps -> F. ) ) ) -> ( ( F. -> F. ) -> ( ( ps -> F. ) -> ( ps -> F. ) ) ) ) |
4 |
2 3
|
ax-mp |
|- ( ( F. -> F. ) -> ( ( ps -> F. ) -> ( ps -> F. ) ) ) |
5 |
1 4
|
ax-mp |
|- ( ( ps -> F. ) -> ( ps -> F. ) ) |
6 |
|
tbwlem1 |
|- ( ( ( ps -> F. ) -> ( ps -> F. ) ) -> ( ps -> ( ( ps -> F. ) -> F. ) ) ) |
7 |
5 6
|
ax-mp |
|- ( ps -> ( ( ps -> F. ) -> F. ) ) |
8 |
|
tbw-ax1 |
|- ( ( ( ph -> F. ) -> ps ) -> ( ( ps -> ( ( ps -> F. ) -> F. ) ) -> ( ( ph -> F. ) -> ( ( ps -> F. ) -> F. ) ) ) ) |
9 |
|
tbwlem1 |
|- ( ( ( ( ph -> F. ) -> ps ) -> ( ( ps -> ( ( ps -> F. ) -> F. ) ) -> ( ( ph -> F. ) -> ( ( ps -> F. ) -> F. ) ) ) ) -> ( ( ps -> ( ( ps -> F. ) -> F. ) ) -> ( ( ( ph -> F. ) -> ps ) -> ( ( ph -> F. ) -> ( ( ps -> F. ) -> F. ) ) ) ) ) |
10 |
8 9
|
ax-mp |
|- ( ( ps -> ( ( ps -> F. ) -> F. ) ) -> ( ( ( ph -> F. ) -> ps ) -> ( ( ph -> F. ) -> ( ( ps -> F. ) -> F. ) ) ) ) |
11 |
7 10
|
ax-mp |
|- ( ( ( ph -> F. ) -> ps ) -> ( ( ph -> F. ) -> ( ( ps -> F. ) -> F. ) ) ) |
12 |
|
tbwlem2 |
|- ( ( ( ph -> F. ) -> ( ( ps -> F. ) -> F. ) ) -> ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ( ( ps -> F. ) -> ph ) ) ) |
13 |
|
tbwlem3 |
|- ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ( ( ps -> F. ) -> ph ) ) -> ( ( ps -> F. ) -> ph ) ) |
14 |
12 13
|
tbwsyl |
|- ( ( ( ph -> F. ) -> ( ( ps -> F. ) -> F. ) ) -> ( ( ps -> F. ) -> ph ) ) |
15 |
11 14
|
tbwsyl |
|- ( ( ( ph -> F. ) -> ps ) -> ( ( ps -> F. ) -> ph ) ) |