| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tbw-ax4 |
|- ( F. -> F. ) |
| 2 |
|
tbw-ax1 |
|- ( ( ps -> F. ) -> ( ( F. -> F. ) -> ( ps -> F. ) ) ) |
| 3 |
|
tbwlem1 |
|- ( ( ( ps -> F. ) -> ( ( F. -> F. ) -> ( ps -> F. ) ) ) -> ( ( F. -> F. ) -> ( ( ps -> F. ) -> ( ps -> F. ) ) ) ) |
| 4 |
2 3
|
ax-mp |
|- ( ( F. -> F. ) -> ( ( ps -> F. ) -> ( ps -> F. ) ) ) |
| 5 |
1 4
|
ax-mp |
|- ( ( ps -> F. ) -> ( ps -> F. ) ) |
| 6 |
|
tbwlem1 |
|- ( ( ( ps -> F. ) -> ( ps -> F. ) ) -> ( ps -> ( ( ps -> F. ) -> F. ) ) ) |
| 7 |
5 6
|
ax-mp |
|- ( ps -> ( ( ps -> F. ) -> F. ) ) |
| 8 |
|
tbw-ax1 |
|- ( ( ( ph -> F. ) -> ps ) -> ( ( ps -> ( ( ps -> F. ) -> F. ) ) -> ( ( ph -> F. ) -> ( ( ps -> F. ) -> F. ) ) ) ) |
| 9 |
|
tbwlem1 |
|- ( ( ( ( ph -> F. ) -> ps ) -> ( ( ps -> ( ( ps -> F. ) -> F. ) ) -> ( ( ph -> F. ) -> ( ( ps -> F. ) -> F. ) ) ) ) -> ( ( ps -> ( ( ps -> F. ) -> F. ) ) -> ( ( ( ph -> F. ) -> ps ) -> ( ( ph -> F. ) -> ( ( ps -> F. ) -> F. ) ) ) ) ) |
| 10 |
8 9
|
ax-mp |
|- ( ( ps -> ( ( ps -> F. ) -> F. ) ) -> ( ( ( ph -> F. ) -> ps ) -> ( ( ph -> F. ) -> ( ( ps -> F. ) -> F. ) ) ) ) |
| 11 |
7 10
|
ax-mp |
|- ( ( ( ph -> F. ) -> ps ) -> ( ( ph -> F. ) -> ( ( ps -> F. ) -> F. ) ) ) |
| 12 |
|
tbwlem2 |
|- ( ( ( ph -> F. ) -> ( ( ps -> F. ) -> F. ) ) -> ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ( ( ps -> F. ) -> ph ) ) ) |
| 13 |
|
tbwlem3 |
|- ( ( ( ( ( ph -> F. ) -> ph ) -> ph ) -> ( ( ps -> F. ) -> ph ) ) -> ( ( ps -> F. ) -> ph ) ) |
| 14 |
12 13
|
tbwsyl |
|- ( ( ( ph -> F. ) -> ( ( ps -> F. ) -> F. ) ) -> ( ( ps -> F. ) -> ph ) ) |
| 15 |
11 14
|
tbwsyl |
|- ( ( ( ph -> F. ) -> ps ) -> ( ( ps -> F. ) -> ph ) ) |