Step |
Hyp |
Ref |
Expression |
1 |
|
tbw-ax2 |
|- ( ph -> ( ps -> ph ) ) |
2 |
|
tbw-ax1 |
|- ( ( ps -> ph ) -> ( ( ph -> F. ) -> ( ps -> F. ) ) ) |
3 |
1 2
|
tbwsyl |
|- ( ph -> ( ( ph -> F. ) -> ( ps -> F. ) ) ) |
4 |
|
tbwlem1 |
|- ( ( ph -> ( ( ph -> F. ) -> ( ps -> F. ) ) ) -> ( ( ph -> F. ) -> ( ph -> ( ps -> F. ) ) ) ) |
5 |
3 4
|
ax-mp |
|- ( ( ph -> F. ) -> ( ph -> ( ps -> F. ) ) ) |
6 |
|
tbwlem4 |
|- ( ( ( ph -> F. ) -> ( ph -> ( ps -> F. ) ) ) -> ( ( ( ph -> ( ps -> F. ) ) -> F. ) -> ph ) ) |
7 |
5 6
|
ax-mp |
|- ( ( ( ph -> ( ps -> F. ) ) -> F. ) -> ph ) |