Metamath Proof Explorer


Theorem tcphsub

Description: The subtraction operation of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypotheses tcphval.n G=toCPreHilW
tcphsub.v -˙=-W
Assertion tcphsub -˙=-G

Proof

Step Hyp Ref Expression
1 tcphval.n G=toCPreHilW
2 tcphsub.v -˙=-W
3 eqid BaseW=BaseW
4 1 3 tcphbas BaseW=BaseG
5 4 a1i BaseW=BaseG
6 eqid +W=+W
7 1 6 tchplusg +W=+G
8 7 a1i +W=+G
9 5 8 grpsubpropd -W=-G
10 9 mptru -W=-G
11 2 10 eqtri -˙=-G