Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
β’ πΊ = ( toβPreHil β π ) |
2 |
|
tcphsub.v |
β’ β = ( -g β π ) |
3 |
|
eqid |
β’ ( Base β π ) = ( Base β π ) |
4 |
1 3
|
tcphbas |
β’ ( Base β π ) = ( Base β πΊ ) |
5 |
4
|
a1i |
β’ ( β€ β ( Base β π ) = ( Base β πΊ ) ) |
6 |
|
eqid |
β’ ( +g β π ) = ( +g β π ) |
7 |
1 6
|
tchplusg |
β’ ( +g β π ) = ( +g β πΊ ) |
8 |
7
|
a1i |
β’ ( β€ β ( +g β π ) = ( +g β πΊ ) ) |
9 |
5 8
|
grpsubpropd |
β’ ( β€ β ( -g β π ) = ( -g β πΊ ) ) |
10 |
9
|
mptru |
β’ ( -g β π ) = ( -g β πΊ ) |
11 |
2 10
|
eqtri |
β’ β = ( -g β πΊ ) |