Metamath Proof Explorer


Theorem tcphsub

Description: The subtraction operation of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypotheses tcphval.n ⊒ 𝐺 = ( toβ„‚PreHil β€˜ π‘Š )
tcphsub.v ⊒ βˆ’ = ( -g β€˜ π‘Š )
Assertion tcphsub βˆ’ = ( -g β€˜ 𝐺 )

Proof

Step Hyp Ref Expression
1 tcphval.n ⊒ 𝐺 = ( toβ„‚PreHil β€˜ π‘Š )
2 tcphsub.v ⊒ βˆ’ = ( -g β€˜ π‘Š )
3 eqid ⊒ ( Base β€˜ π‘Š ) = ( Base β€˜ π‘Š )
4 1 3 tcphbas ⊒ ( Base β€˜ π‘Š ) = ( Base β€˜ 𝐺 )
5 4 a1i ⊒ ( ⊀ β†’ ( Base β€˜ π‘Š ) = ( Base β€˜ 𝐺 ) )
6 eqid ⊒ ( +g β€˜ π‘Š ) = ( +g β€˜ π‘Š )
7 1 6 tchplusg ⊒ ( +g β€˜ π‘Š ) = ( +g β€˜ 𝐺 )
8 7 a1i ⊒ ( ⊀ β†’ ( +g β€˜ π‘Š ) = ( +g β€˜ 𝐺 ) )
9 5 8 grpsubpropd ⊒ ( ⊀ β†’ ( -g β€˜ π‘Š ) = ( -g β€˜ 𝐺 ) )
10 9 mptru ⊒ ( -g β€˜ π‘Š ) = ( -g β€˜ 𝐺 )
11 2 10 eqtri ⊒ βˆ’ = ( -g β€˜ 𝐺 )