Metamath Proof Explorer


Theorem tfis2d

Description: Transfinite Induction Schema, using implicit substitution. (Contributed by Emmett Weisz, 3-May-2020)

Ref Expression
Hypotheses tfis2d.1 φ x = y ψ χ
tfis2d.2 φ x On y x χ ψ
Assertion tfis2d φ x On ψ

Proof

Step Hyp Ref Expression
1 tfis2d.1 φ x = y ψ χ
2 tfis2d.2 φ x On y x χ ψ
3 1 com12 x = y φ ψ χ
4 3 pm5.74d x = y φ ψ φ χ
5 r19.21v y x φ χ φ y x χ
6 2 com12 x On φ y x χ ψ
7 6 a2d x On φ y x χ φ ψ
8 5 7 syl5bi x On y x φ χ φ ψ
9 4 8 tfis2 x On φ ψ
10 9 com12 φ x On ψ