Metamath Proof Explorer


Theorem tfr1ALT

Description: Alternate proof of tfr1 using well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis tfrALT.1 F=recsG
Assertion tfr1ALT FFnOn

Proof

Step Hyp Ref Expression
1 tfrALT.1 F=recsG
2 epweon EWeOn
3 epse ESeOn
4 df-recs recsG=wrecsEOnG
5 1 4 eqtri F=wrecsEOnG
6 5 wfr1 EWeOnESeOnFFnOn
7 2 3 6 mp2an FFnOn