Metamath Proof Explorer


Theorem tfr1a

Description: A weak version of tfr1 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Hypothesis tfr.1 F=recsG
Assertion tfr1a FunFLimdomF

Proof

Step Hyp Ref Expression
1 tfr.1 F=recsG
2 eqid f|xOnfFnxyxfy=Gfy=f|xOnfFnxyxfy=Gfy
3 2 tfrlem7 FunrecsG
4 1 funeqi FunFFunrecsG
5 3 4 mpbir FunF
6 2 tfrlem16 LimdomrecsG
7 1 dmeqi domF=domrecsG
8 limeq domF=domrecsGLimdomFLimdomrecsG
9 7 8 ax-mp LimdomFLimdomrecsG
10 6 9 mpbir LimdomF
11 5 10 pm3.2i FunFLimdomF