Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Natural addition of Cantor normal forms
tfsconcatrnsson
Metamath Proof Explorer
Description: The concatenation of transfinite sequences yields ordinals iff both
sequences yield ordinals. Theorem 4 in Grzegorz Bancerek, "Epsilon
Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4,
Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP , 2-Mar-2025)
Ref
Expression
Hypothesis
tfsconcat.op
⊢ + ˙ = a ∈ V , b ∈ V ⟼ a ∪ x y | x ∈ dom ⁡ a + 𝑜 dom ⁡ b ∖ dom ⁡ a ∧ ∃ z ∈ dom ⁡ b x = dom ⁡ a + 𝑜 z ∧ y = b ⁡ z
Assertion
tfsconcatrnsson
⊢ A Fn C ∧ B Fn D ∧ C ∈ On ∧ D ∈ On → ran ⁡ A + ˙ B ⊆ On ↔ ran ⁡ A ⊆ On ∧ ran ⁡ B ⊆ On
Proof
Step
Hyp
Ref
Expression
1
tfsconcat.op
⊢ + ˙ = a ∈ V , b ∈ V ⟼ a ∪ x y | x ∈ dom ⁡ a + 𝑜 dom ⁡ b ∖ dom ⁡ a ∧ ∃ z ∈ dom ⁡ b x = dom ⁡ a + 𝑜 z ∧ y = b ⁡ z
2
1
tfsconcatrnss
⊢ A Fn C ∧ B Fn D ∧ C ∈ On ∧ D ∈ On → ran ⁡ A + ˙ B ⊆ On ↔ ran ⁡ A ⊆ On ∧ ran ⁡ B ⊆ On