Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Richard Penner Natural addition of Cantor normal forms tfsconcatrnsson  
				
		 
		
			
		 
		Description:   The concatenation of transfinite sequences yields ordinals iff both
       sequences yield ordinals.  Theorem 4 in Grzegorz Bancerek, "Epsilon
       Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4,
       Pages 249–256, 2009.  DOI: 10.2478/v10037-009-0032-8 (Contributed by RP , 2-Mar-2025) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypothesis 
						tfsconcat.op   ⊢   +  ˙ =    a  ∈  V  ,  b  ∈  V  ⟼   a  ∪   x  y |    x  ∈    dom  ⁡  a     +  𝑜     dom  ⁡  b   ∖   dom  ⁡  a       ∧   ∃  z  ∈   dom  ⁡  b      x  =   dom  ⁡  a     +  𝑜    z   ∧   y  =   b  ⁡  z                     
					 
				
					Assertion 
					tfsconcatrnsson    ⊢     A  Fn  C    ∧   B  Fn  D     ∧    C  ∈  On    ∧   D  ∈  On      →     ran  ⁡  A  +  ˙ B   ⊆  On    ↔     ran  ⁡  A    ⊆  On    ∧    ran  ⁡  B    ⊆  On           
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							tfsconcat.op  ⊢   +  ˙ =    a  ∈  V  ,  b  ∈  V  ⟼   a  ∪   x  y |    x  ∈    dom  ⁡  a     +  𝑜     dom  ⁡  b   ∖   dom  ⁡  a       ∧   ∃  z  ∈   dom  ⁡  b      x  =   dom  ⁡  a     +  𝑜    z   ∧   y  =   b  ⁡  z                     
						
							2 
								1 
							 
							tfsconcatrnss   ⊢     A  Fn  C    ∧   B  Fn  D     ∧    C  ∈  On    ∧   D  ∈  On      →     ran  ⁡  A  +  ˙ B   ⊆  On    ↔     ran  ⁡  A    ⊆  On    ∧    ran  ⁡  B    ⊆  On