Metamath Proof Explorer


Theorem tfsnfin

Description: A transfinite sequence is infinite iff its domain is greater than or equal to omega. Theorem 5 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 1-Mar-2025)

Ref Expression
Assertion tfsnfin A Fn B B On ¬ A Fin ω B

Proof

Step Hyp Ref Expression
1 fnfun A Fn B Fun A
2 fundmfibi Fun A A Fin dom A Fin
3 1 2 syl A Fn B A Fin dom A Fin
4 fndm A Fn B dom A = B
5 4 eleq1d A Fn B dom A Fin B Fin
6 3 5 bitrd A Fn B A Fin B Fin
7 onfin B On B Fin B ω
8 6 7 sylan9bb A Fn B B On A Fin B ω
9 8 notbid A Fn B B On ¬ A Fin ¬ B ω
10 omelon ω On
11 simpr A Fn B B On B On
12 ontri1 ω On B On ω B ¬ B ω
13 10 11 12 sylancr A Fn B B On ω B ¬ B ω
14 9 13 bitr4d A Fn B B On ¬ A Fin ω B