Step |
Hyp |
Ref |
Expression |
1 |
|
fnfun |
|- ( A Fn B -> Fun A ) |
2 |
|
fundmfibi |
|- ( Fun A -> ( A e. Fin <-> dom A e. Fin ) ) |
3 |
1 2
|
syl |
|- ( A Fn B -> ( A e. Fin <-> dom A e. Fin ) ) |
4 |
|
fndm |
|- ( A Fn B -> dom A = B ) |
5 |
4
|
eleq1d |
|- ( A Fn B -> ( dom A e. Fin <-> B e. Fin ) ) |
6 |
3 5
|
bitrd |
|- ( A Fn B -> ( A e. Fin <-> B e. Fin ) ) |
7 |
|
onfin |
|- ( B e. On -> ( B e. Fin <-> B e. _om ) ) |
8 |
6 7
|
sylan9bb |
|- ( ( A Fn B /\ B e. On ) -> ( A e. Fin <-> B e. _om ) ) |
9 |
8
|
notbid |
|- ( ( A Fn B /\ B e. On ) -> ( -. A e. Fin <-> -. B e. _om ) ) |
10 |
|
omelon |
|- _om e. On |
11 |
|
simpr |
|- ( ( A Fn B /\ B e. On ) -> B e. On ) |
12 |
|
ontri1 |
|- ( ( _om e. On /\ B e. On ) -> ( _om C_ B <-> -. B e. _om ) ) |
13 |
10 11 12
|
sylancr |
|- ( ( A Fn B /\ B e. On ) -> ( _om C_ B <-> -. B e. _om ) ) |
14 |
9 13
|
bitr4d |
|- ( ( A Fn B /\ B e. On ) -> ( -. A e. Fin <-> _om C_ B ) ) |