Metamath Proof Explorer


Theorem tfsnfin

Description: A transfinite sequence is infinite iff its domain is greater than or equal to omega. Theorem 5 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 1-Mar-2025)

Ref Expression
Assertion tfsnfin
|- ( ( A Fn B /\ B e. On ) -> ( -. A e. Fin <-> _om C_ B ) )

Proof

Step Hyp Ref Expression
1 fnfun
 |-  ( A Fn B -> Fun A )
2 fundmfibi
 |-  ( Fun A -> ( A e. Fin <-> dom A e. Fin ) )
3 1 2 syl
 |-  ( A Fn B -> ( A e. Fin <-> dom A e. Fin ) )
4 fndm
 |-  ( A Fn B -> dom A = B )
5 4 eleq1d
 |-  ( A Fn B -> ( dom A e. Fin <-> B e. Fin ) )
6 3 5 bitrd
 |-  ( A Fn B -> ( A e. Fin <-> B e. Fin ) )
7 onfin
 |-  ( B e. On -> ( B e. Fin <-> B e. _om ) )
8 6 7 sylan9bb
 |-  ( ( A Fn B /\ B e. On ) -> ( A e. Fin <-> B e. _om ) )
9 8 notbid
 |-  ( ( A Fn B /\ B e. On ) -> ( -. A e. Fin <-> -. B e. _om ) )
10 omelon
 |-  _om e. On
11 simpr
 |-  ( ( A Fn B /\ B e. On ) -> B e. On )
12 ontri1
 |-  ( ( _om e. On /\ B e. On ) -> ( _om C_ B <-> -. B e. _om ) )
13 10 11 12 sylancr
 |-  ( ( A Fn B /\ B e. On ) -> ( _om C_ B <-> -. B e. _om ) )
14 9 13 bitr4d
 |-  ( ( A Fn B /\ B e. On ) -> ( -. A e. Fin <-> _om C_ B ) )