| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnfun |  |-  ( A Fn B -> Fun A ) | 
						
							| 2 |  | fundmfibi |  |-  ( Fun A -> ( A e. Fin <-> dom A e. Fin ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( A Fn B -> ( A e. Fin <-> dom A e. Fin ) ) | 
						
							| 4 |  | fndm |  |-  ( A Fn B -> dom A = B ) | 
						
							| 5 | 4 | eleq1d |  |-  ( A Fn B -> ( dom A e. Fin <-> B e. Fin ) ) | 
						
							| 6 | 3 5 | bitrd |  |-  ( A Fn B -> ( A e. Fin <-> B e. Fin ) ) | 
						
							| 7 |  | onfin |  |-  ( B e. On -> ( B e. Fin <-> B e. _om ) ) | 
						
							| 8 | 6 7 | sylan9bb |  |-  ( ( A Fn B /\ B e. On ) -> ( A e. Fin <-> B e. _om ) ) | 
						
							| 9 | 8 | notbid |  |-  ( ( A Fn B /\ B e. On ) -> ( -. A e. Fin <-> -. B e. _om ) ) | 
						
							| 10 |  | omelon |  |-  _om e. On | 
						
							| 11 |  | simpr |  |-  ( ( A Fn B /\ B e. On ) -> B e. On ) | 
						
							| 12 |  | ontri1 |  |-  ( ( _om e. On /\ B e. On ) -> ( _om C_ B <-> -. B e. _om ) ) | 
						
							| 13 | 10 11 12 | sylancr |  |-  ( ( A Fn B /\ B e. On ) -> ( _om C_ B <-> -. B e. _om ) ) | 
						
							| 14 | 9 13 | bitr4d |  |-  ( ( A Fn B /\ B e. On ) -> ( -. A e. Fin <-> _om C_ B ) ) |