Metamath Proof Explorer


Theorem tfsnfin

Description: A transfinite sequence is infinite iff its domain is greater than or equal to omega. Theorem 5 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 1-Mar-2025)

Ref Expression
Assertion tfsnfin ( ( 𝐴 Fn 𝐵𝐵 ∈ On ) → ( ¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 fnfun ( 𝐴 Fn 𝐵 → Fun 𝐴 )
2 fundmfibi ( Fun 𝐴 → ( 𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin ) )
3 1 2 syl ( 𝐴 Fn 𝐵 → ( 𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin ) )
4 fndm ( 𝐴 Fn 𝐵 → dom 𝐴 = 𝐵 )
5 4 eleq1d ( 𝐴 Fn 𝐵 → ( dom 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin ) )
6 3 5 bitrd ( 𝐴 Fn 𝐵 → ( 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin ) )
7 onfin ( 𝐵 ∈ On → ( 𝐵 ∈ Fin ↔ 𝐵 ∈ ω ) )
8 6 7 sylan9bb ( ( 𝐴 Fn 𝐵𝐵 ∈ On ) → ( 𝐴 ∈ Fin ↔ 𝐵 ∈ ω ) )
9 8 notbid ( ( 𝐴 Fn 𝐵𝐵 ∈ On ) → ( ¬ 𝐴 ∈ Fin ↔ ¬ 𝐵 ∈ ω ) )
10 omelon ω ∈ On
11 simpr ( ( 𝐴 Fn 𝐵𝐵 ∈ On ) → 𝐵 ∈ On )
12 ontri1 ( ( ω ∈ On ∧ 𝐵 ∈ On ) → ( ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω ) )
13 10 11 12 sylancr ( ( 𝐴 Fn 𝐵𝐵 ∈ On ) → ( ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω ) )
14 9 13 bitr4d ( ( 𝐴 Fn 𝐵𝐵 ∈ On ) → ( ¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵 ) )