| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnfun | ⊢ ( 𝐴  Fn  𝐵  →  Fun  𝐴 ) | 
						
							| 2 |  | fundmfibi | ⊢ ( Fun  𝐴  →  ( 𝐴  ∈  Fin  ↔  dom  𝐴  ∈  Fin ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐴  Fn  𝐵  →  ( 𝐴  ∈  Fin  ↔  dom  𝐴  ∈  Fin ) ) | 
						
							| 4 |  | fndm | ⊢ ( 𝐴  Fn  𝐵  →  dom  𝐴  =  𝐵 ) | 
						
							| 5 | 4 | eleq1d | ⊢ ( 𝐴  Fn  𝐵  →  ( dom  𝐴  ∈  Fin  ↔  𝐵  ∈  Fin ) ) | 
						
							| 6 | 3 5 | bitrd | ⊢ ( 𝐴  Fn  𝐵  →  ( 𝐴  ∈  Fin  ↔  𝐵  ∈  Fin ) ) | 
						
							| 7 |  | onfin | ⊢ ( 𝐵  ∈  On  →  ( 𝐵  ∈  Fin  ↔  𝐵  ∈  ω ) ) | 
						
							| 8 | 6 7 | sylan9bb | ⊢ ( ( 𝐴  Fn  𝐵  ∧  𝐵  ∈  On )  →  ( 𝐴  ∈  Fin  ↔  𝐵  ∈  ω ) ) | 
						
							| 9 | 8 | notbid | ⊢ ( ( 𝐴  Fn  𝐵  ∧  𝐵  ∈  On )  →  ( ¬  𝐴  ∈  Fin  ↔  ¬  𝐵  ∈  ω ) ) | 
						
							| 10 |  | omelon | ⊢ ω  ∈  On | 
						
							| 11 |  | simpr | ⊢ ( ( 𝐴  Fn  𝐵  ∧  𝐵  ∈  On )  →  𝐵  ∈  On ) | 
						
							| 12 |  | ontri1 | ⊢ ( ( ω  ∈  On  ∧  𝐵  ∈  On )  →  ( ω  ⊆  𝐵  ↔  ¬  𝐵  ∈  ω ) ) | 
						
							| 13 | 10 11 12 | sylancr | ⊢ ( ( 𝐴  Fn  𝐵  ∧  𝐵  ∈  On )  →  ( ω  ⊆  𝐵  ↔  ¬  𝐵  ∈  ω ) ) | 
						
							| 14 | 9 13 | bitr4d | ⊢ ( ( 𝐴  Fn  𝐵  ∧  𝐵  ∈  On )  →  ( ¬  𝐴  ∈  Fin  ↔  ω  ⊆  𝐵 ) ) |