| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnfun |
⊢ ( 𝐴 Fn 𝐵 → Fun 𝐴 ) |
| 2 |
|
fundmfibi |
⊢ ( Fun 𝐴 → ( 𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 Fn 𝐵 → ( 𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin ) ) |
| 4 |
|
fndm |
⊢ ( 𝐴 Fn 𝐵 → dom 𝐴 = 𝐵 ) |
| 5 |
4
|
eleq1d |
⊢ ( 𝐴 Fn 𝐵 → ( dom 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin ) ) |
| 6 |
3 5
|
bitrd |
⊢ ( 𝐴 Fn 𝐵 → ( 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin ) ) |
| 7 |
|
onfin |
⊢ ( 𝐵 ∈ On → ( 𝐵 ∈ Fin ↔ 𝐵 ∈ ω ) ) |
| 8 |
6 7
|
sylan9bb |
⊢ ( ( 𝐴 Fn 𝐵 ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ Fin ↔ 𝐵 ∈ ω ) ) |
| 9 |
8
|
notbid |
⊢ ( ( 𝐴 Fn 𝐵 ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ∈ Fin ↔ ¬ 𝐵 ∈ ω ) ) |
| 10 |
|
omelon |
⊢ ω ∈ On |
| 11 |
|
simpr |
⊢ ( ( 𝐴 Fn 𝐵 ∧ 𝐵 ∈ On ) → 𝐵 ∈ On ) |
| 12 |
|
ontri1 |
⊢ ( ( ω ∈ On ∧ 𝐵 ∈ On ) → ( ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω ) ) |
| 13 |
10 11 12
|
sylancr |
⊢ ( ( 𝐴 Fn 𝐵 ∧ 𝐵 ∈ On ) → ( ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω ) ) |
| 14 |
9 13
|
bitr4d |
⊢ ( ( 𝐴 Fn 𝐵 ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵 ) ) |