Metamath Proof Explorer


Theorem tglowdim1

Description: Lower dimension axiom for one dimension. In dimension at least 1, there are at least two distinct points. The condition "the space is of dimension 1 or more" is written here as 2 <_ ( #P ) to avoid a new definition, but a different convention could be chosen. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tglowdim1.p P=BaseG
tglowdim1.d -˙=distG
tglowdim1.i I=ItvG
tglowdim1.g φG𝒢Tarski
tglowdim1.1 φ2P
Assertion tglowdim1 φxPyPxy

Proof

Step Hyp Ref Expression
1 tglowdim1.p P=BaseG
2 tglowdim1.d -˙=distG
3 tglowdim1.i I=ItvG
4 tglowdim1.g φG𝒢Tarski
5 tglowdim1.1 φ2P
6 1 fvexi PV
7 hashge2el2dif PV2PxPyPxy
8 6 5 7 sylancr φxPyPxy