Metamath Proof Explorer


Theorem thincid

Description: In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses thincid.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
thincid.b B=BaseC
thincid.h H=HomC
thincid.x φXB
thincid.i 1˙=IdC
thincid.f φFXHX
Assertion thincid φF=1˙X

Proof

Step Hyp Ref Expression
1 thincid.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
2 thincid.b B=BaseC
3 thincid.h H=HomC
4 thincid.x φXB
5 thincid.i 1˙=IdC
6 thincid.f φFXHX
7 1 thinccd φCCat
8 2 3 5 7 4 catidcl φ1˙XXHX
9 4 4 6 8 2 3 1 thincmo2 φF=1˙X