Metamath Proof Explorer


Theorem tlt2

Description: In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 13-Apr-2018)

Ref Expression
Hypotheses tlt2.b B=BaseK
tlt2.e ˙=K
tlt2.l <˙=<K
Assertion tlt2 KTosetXBYBX˙YY<˙X

Proof

Step Hyp Ref Expression
1 tlt2.b B=BaseK
2 tlt2.e ˙=K
3 tlt2.l <˙=<K
4 exmidd KTosetXBYBX˙Y¬X˙Y
5 1 2 3 tltnle KTosetYBXBY<˙X¬X˙Y
6 5 3com23 KTosetXBYBY<˙X¬X˙Y
7 6 orbi2d KTosetXBYBX˙YY<˙XX˙Y¬X˙Y
8 4 7 mpbird KTosetXBYBX˙YY<˙X