Metamath Proof Explorer


Theorem tngsca

Description: The scalar ring of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses tngbas.t T = G toNrmGrp N
tngsca.2 F = Scalar G
Assertion tngsca N V F = Scalar T

Proof

Step Hyp Ref Expression
1 tngbas.t T = G toNrmGrp N
2 tngsca.2 F = Scalar G
3 scaid Scalar = Slot Scalar ndx
4 slotstnscsi TopSet ndx Scalar ndx TopSet ndx ndx TopSet ndx 𝑖 ndx
5 4 simp1i TopSet ndx Scalar ndx
6 5 necomi Scalar ndx TopSet ndx
7 slotsdnscsi dist ndx Scalar ndx dist ndx ndx dist ndx 𝑖 ndx
8 7 simp1i dist ndx Scalar ndx
9 8 necomi Scalar ndx dist ndx
10 1 3 6 9 tnglem N V Scalar G = Scalar T
11 2 10 eqtrid N V F = Scalar T