Metamath Proof Explorer


Theorem tngvsca

Description: The scalar multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses tngbas.t T = G toNrmGrp N
tngvsca.2 · ˙ = G
Assertion tngvsca N V · ˙ = T

Proof

Step Hyp Ref Expression
1 tngbas.t T = G toNrmGrp N
2 tngvsca.2 · ˙ = G
3 vscaid 𝑠 = Slot ndx
4 slotstnscsi TopSet ndx Scalar ndx TopSet ndx ndx TopSet ndx 𝑖 ndx
5 4 simp2i TopSet ndx ndx
6 5 necomi ndx TopSet ndx
7 slotsdnscsi dist ndx Scalar ndx dist ndx ndx dist ndx 𝑖 ndx
8 7 simp2i dist ndx ndx
9 8 necomi ndx dist ndx
10 1 3 6 9 tnglem N V G = T
11 2 10 eqtrid N V · ˙ = T