Metamath Proof Explorer


Theorem topcld

Description: The underlying set of a topology is closed. Part of Theorem 6.1(1) of Munkres p. 93. (Contributed by NM, 3-Oct-2006)

Ref Expression
Hypothesis iscld.1 X=J
Assertion topcld JTopXClsdJ

Proof

Step Hyp Ref Expression
1 iscld.1 X=J
2 difid XX=
3 0opn JTopJ
4 2 3 eqeltrid JTopXXJ
5 ssid XX
6 4 5 jctil JTopXXXXJ
7 1 iscld JTopXClsdJXXXXJ
8 6 7 mpbird JTopXClsdJ