Metamath Proof Explorer


Theorem tposconst

Description: The transposition of a constant operation using the relation representation. (Contributed by SO, 11-Jul-2018)

Ref Expression
Assertion tposconst tposA×B×C=B×A×C

Proof

Step Hyp Ref Expression
1 fconstmpo A×B×C=xA,yBC
2 1 tposmpo tposA×B×C=yB,xAC
3 fconstmpo B×A×C=yB,xAC
4 2 3 eqtr4i tposA×B×C=B×A×C