Metamath Proof Explorer


Theorem tpspropd

Description: A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses tpspropd.1 φBaseK=BaseL
tpspropd.2 φTopOpenK=TopOpenL
Assertion tpspropd φKTopSpLTopSp

Proof

Step Hyp Ref Expression
1 tpspropd.1 φBaseK=BaseL
2 tpspropd.2 φTopOpenK=TopOpenL
3 1 fveq2d φTopOnBaseK=TopOnBaseL
4 2 3 eleq12d φTopOpenKTopOnBaseKTopOpenLTopOnBaseL
5 eqid BaseK=BaseK
6 eqid TopOpenK=TopOpenK
7 5 6 istps KTopSpTopOpenKTopOnBaseK
8 eqid BaseL=BaseL
9 eqid TopOpenL=TopOpenL
10 8 9 istps LTopSpTopOpenLTopOnBaseL
11 4 7 10 3bitr4g φKTopSpLTopSp