Metamath Proof Explorer


Theorem tpspropd

Description: A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses tpspropd.1 φ Base K = Base L
tpspropd.2 φ TopOpen K = TopOpen L
Assertion tpspropd φ K TopSp L TopSp

Proof

Step Hyp Ref Expression
1 tpspropd.1 φ Base K = Base L
2 tpspropd.2 φ TopOpen K = TopOpen L
3 1 fveq2d φ TopOn Base K = TopOn Base L
4 2 3 eleq12d φ TopOpen K TopOn Base K TopOpen L TopOn Base L
5 eqid Base K = Base K
6 eqid TopOpen K = TopOpen K
7 5 6 istps K TopSp TopOpen K TopOn Base K
8 eqid Base L = Base L
9 eqid TopOpen L = TopOpen L
10 8 9 istps L TopSp TopOpen L TopOn Base L
11 4 7 10 3bitr4g φ K TopSp L TopSp