Metamath Proof Explorer


Theorem trpredex

Description: The transitive predecessors under a relation form a set.

This is the first theorem in the transitive predecessor series that requires the axiom of infinity. (Contributed by Scott Fenton, 18-Feb-2011)

Ref Expression
Assertion trpredex TrPred R A X V

Proof

Step Hyp Ref Expression
1 df-trpred TrPred R A X = ran rec a V y a Pred R A y Pred R A X ω
2 frfnom rec a V y a Pred R A y Pred R A X ω Fn ω
3 omex ω V
4 fnex rec a V y a Pred R A y Pred R A X ω Fn ω ω V rec a V y a Pred R A y Pred R A X ω V
5 2 3 4 mp2an rec a V y a Pred R A y Pred R A X ω V
6 5 rnex ran rec a V y a Pred R A y Pred R A X ω V
7 6 uniex ran rec a V y a Pred R A y Pred R A X ω V
8 1 7 eqeltri TrPred R A X V