Description: The transitive predecessors under a relation form a set.
This is the first theorem in the transitive predecessor series that requires the axiom of infinity. (Contributed by Scott Fenton, 18-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | trpredex | |- TrPred ( R , A , X ) e. _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-trpred | |- TrPred ( R , A , X ) = U. ran ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) |
|
2 | frfnom | |- ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) Fn _om |
|
3 | omex | |- _om e. _V |
|
4 | fnex | |- ( ( ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) Fn _om /\ _om e. _V ) -> ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) e. _V ) |
|
5 | 2 3 4 | mp2an | |- ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) e. _V |
6 | 5 | rnex | |- ran ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) e. _V |
7 | 6 | uniex | |- U. ran ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) e. _V |
8 | 1 7 | eqeltri | |- TrPred ( R , A , X ) e. _V |