Metamath Proof Explorer


Theorem trpredex

Description: The transitive predecessors under a relation form a set.

This is the first theorem in the transitive predecessor series that requires the axiom of infinity. (Contributed by Scott Fenton, 18-Feb-2011)

Ref Expression
Assertion trpredex
|- TrPred ( R , A , X ) e. _V

Proof

Step Hyp Ref Expression
1 df-trpred
 |-  TrPred ( R , A , X ) = U. ran ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om )
2 frfnom
 |-  ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) Fn _om
3 omex
 |-  _om e. _V
4 fnex
 |-  ( ( ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) Fn _om /\ _om e. _V ) -> ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) e. _V )
5 2 3 4 mp2an
 |-  ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) e. _V
6 5 rnex
 |-  ran ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) e. _V
7 6 uniex
 |-  U. ran ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) e. _V
8 1 7 eqeltri
 |-  TrPred ( R , A , X ) e. _V