Metamath Proof Explorer


Theorem trss

Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994) (Proof shortened by JJ, 26-Jul-2021)

Ref Expression
Assertion trss TrABABA

Proof

Step Hyp Ref Expression
1 dftr3 TrAxAxA
2 sseq1 x=BxABA
3 2 rspccv xAxABABA
4 1 3 sylbi TrABABA