Metamath Proof Explorer


Theorem tskxp

Description: The Cartesian product of two elements of a transitive Tarski class is an element of the class. JFM CLASSES2 th. 67 (partly). (Contributed by FL, 15-Apr-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tskxp TTarskiTrTATBTA×BT

Proof

Step Hyp Ref Expression
1 ne0i ATT
2 tskwun TTarskiTrTTTWUni
3 2 3expa TTarskiTrTTTWUni
4 1 3 sylan2 TTarskiTrTATTWUni
5 4 3adant3 TTarskiTrTATBTTWUni
6 simp2 TTarskiTrTATBTAT
7 simp3 TTarskiTrTATBTBT
8 5 6 7 wunxp TTarskiTrTATBTA×BT