Metamath Proof Explorer


Theorem tz6.12c

Description: Corollary of Theorem 6.12(1) of TakeutiZaring p. 27. (Contributed by NM, 30-Apr-2004) (Proof shortened by SN, 23-Dec-2024)

Ref Expression
Assertion tz6.12c ∃! y A F y F A = y A F y

Proof

Step Hyp Ref Expression
1 df-fv F A = ι y | A F y
2 1 eqeq1i F A = y ι y | A F y = y
3 iota1 ∃! y A F y A F y ι y | A F y = y
4 2 3 bitr4id ∃! y A F y F A = y A F y