Metamath Proof Explorer


Theorem tz9.12lem2

Description: Lemma for tz9.12 . (Contributed by NM, 22-Sep-2003)

Ref Expression
Hypotheses tz9.12lem.1 AV
tz9.12lem.2 F=zVvOn|zR1v
Assertion tz9.12lem2 sucFAOn

Proof

Step Hyp Ref Expression
1 tz9.12lem.1 AV
2 tz9.12lem.2 F=zVvOn|zR1v
3 1 2 tz9.12lem1 FAOn
4 2 funmpt2 FunF
5 1 funimaex FunFFAV
6 4 5 ax-mp FAV
7 6 ssonunii FAOnFAOn
8 3 7 ax-mp FAOn
9 8 onsuci sucFAOn