Metamath Proof Explorer


Theorem tz9.12lem2

Description: Lemma for tz9.12 . (Contributed by NM, 22-Sep-2003)

Ref Expression
Hypotheses tz9.12lem.1 𝐴 ∈ V
tz9.12lem.2 𝐹 = ( 𝑧 ∈ V ↦ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } )
Assertion tz9.12lem2 suc ( 𝐹𝐴 ) ∈ On

Proof

Step Hyp Ref Expression
1 tz9.12lem.1 𝐴 ∈ V
2 tz9.12lem.2 𝐹 = ( 𝑧 ∈ V ↦ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } )
3 1 2 tz9.12lem1 ( 𝐹𝐴 ) ⊆ On
4 2 funmpt2 Fun 𝐹
5 1 funimaex ( Fun 𝐹 → ( 𝐹𝐴 ) ∈ V )
6 4 5 ax-mp ( 𝐹𝐴 ) ∈ V
7 6 ssonunii ( ( 𝐹𝐴 ) ⊆ On → ( 𝐹𝐴 ) ∈ On )
8 3 7 ax-mp ( 𝐹𝐴 ) ∈ On
9 8 onsuci suc ( 𝐹𝐴 ) ∈ On