Description: Lemma for tz9.12 . (Contributed by NM, 22-Sep-2003)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tz9.12lem.1 | ⊢ 𝐴 ∈ V | |
tz9.12lem.2 | ⊢ 𝐹 = ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) | ||
Assertion | tz9.12lem2 | ⊢ suc ∪ ( 𝐹 “ 𝐴 ) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz9.12lem.1 | ⊢ 𝐴 ∈ V | |
2 | tz9.12lem.2 | ⊢ 𝐹 = ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) | |
3 | 1 2 | tz9.12lem1 | ⊢ ( 𝐹 “ 𝐴 ) ⊆ On |
4 | 2 | funmpt2 | ⊢ Fun 𝐹 |
5 | 1 | funimaex | ⊢ ( Fun 𝐹 → ( 𝐹 “ 𝐴 ) ∈ V ) |
6 | 4 5 | ax-mp | ⊢ ( 𝐹 “ 𝐴 ) ∈ V |
7 | 6 | ssonunii | ⊢ ( ( 𝐹 “ 𝐴 ) ⊆ On → ∪ ( 𝐹 “ 𝐴 ) ∈ On ) |
8 | 3 7 | ax-mp | ⊢ ∪ ( 𝐹 “ 𝐴 ) ∈ On |
9 | 8 | onsuci | ⊢ suc ∪ ( 𝐹 “ 𝐴 ) ∈ On |