Metamath Proof Explorer


Theorem tz9.12lem3

Description: Lemma for tz9.12 . (Contributed by NM, 22-Sep-2003) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses tz9.12lem.1 𝐴 ∈ V
tz9.12lem.2 𝐹 = ( 𝑧 ∈ V ↦ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } )
Assertion tz9.12lem3 ( ∀ 𝑥𝐴𝑦 ∈ On 𝑥 ∈ ( 𝑅1𝑦 ) → 𝐴 ∈ ( 𝑅1 ‘ suc suc ( 𝐹𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 tz9.12lem.1 𝐴 ∈ V
2 tz9.12lem.2 𝐹 = ( 𝑧 ∈ V ↦ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } )
3 2 funmpt2 Fun 𝐹
4 fveq2 ( 𝑣 = 𝑦 → ( 𝑅1𝑣 ) = ( 𝑅1𝑦 ) )
5 4 eleq2d ( 𝑣 = 𝑦 → ( 𝑥 ∈ ( 𝑅1𝑣 ) ↔ 𝑥 ∈ ( 𝑅1𝑦 ) ) )
6 5 rspcev ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1𝑦 ) ) → ∃ 𝑣 ∈ On 𝑥 ∈ ( 𝑅1𝑣 ) )
7 rabn0 ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ≠ ∅ ↔ ∃ 𝑣 ∈ On 𝑥 ∈ ( 𝑅1𝑣 ) )
8 6 7 sylibr ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1𝑦 ) ) → { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ≠ ∅ )
9 intex ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ≠ ∅ ↔ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ∈ V )
10 8 9 sylib ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1𝑦 ) ) → { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ∈ V )
11 vex 𝑥 ∈ V
12 eleq1w ( 𝑧 = 𝑥 → ( 𝑧 ∈ ( 𝑅1𝑣 ) ↔ 𝑥 ∈ ( 𝑅1𝑣 ) ) )
13 12 rabbidv ( 𝑧 = 𝑥 → { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } = { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } )
14 13 inteqd ( 𝑧 = 𝑥 { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } = { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } )
15 14 eleq1d ( 𝑧 = 𝑥 → ( { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } ∈ V ↔ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ∈ V ) )
16 2 dmmpt dom 𝐹 = { 𝑧 ∈ V ∣ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } ∈ V }
17 15 16 elrab2 ( 𝑥 ∈ dom 𝐹 ↔ ( 𝑥 ∈ V ∧ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ∈ V ) )
18 11 17 mpbiran ( 𝑥 ∈ dom 𝐹 { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ∈ V )
19 10 18 sylibr ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1𝑦 ) ) → 𝑥 ∈ dom 𝐹 )
20 funfvima ( ( Fun 𝐹𝑥 ∈ dom 𝐹 ) → ( 𝑥𝐴 → ( 𝐹𝑥 ) ∈ ( 𝐹𝐴 ) ) )
21 3 19 20 sylancr ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1𝑦 ) ) → ( 𝑥𝐴 → ( 𝐹𝑥 ) ∈ ( 𝐹𝐴 ) ) )
22 1 2 tz9.12lem2 suc ( 𝐹𝐴 ) ∈ On
23 1 2 tz9.12lem1 ( 𝐹𝐴 ) ⊆ On
24 onsucuni ( ( 𝐹𝐴 ) ⊆ On → ( 𝐹𝐴 ) ⊆ suc ( 𝐹𝐴 ) )
25 23 24 ax-mp ( 𝐹𝐴 ) ⊆ suc ( 𝐹𝐴 )
26 25 sseli ( ( 𝐹𝑥 ) ∈ ( 𝐹𝐴 ) → ( 𝐹𝑥 ) ∈ suc ( 𝐹𝐴 ) )
27 r1ord2 ( suc ( 𝐹𝐴 ) ∈ On → ( ( 𝐹𝑥 ) ∈ suc ( 𝐹𝐴 ) → ( 𝑅1 ‘ ( 𝐹𝑥 ) ) ⊆ ( 𝑅1 ‘ suc ( 𝐹𝐴 ) ) ) )
28 22 26 27 mpsyl ( ( 𝐹𝑥 ) ∈ ( 𝐹𝐴 ) → ( 𝑅1 ‘ ( 𝐹𝑥 ) ) ⊆ ( 𝑅1 ‘ suc ( 𝐹𝐴 ) ) )
29 21 28 syl6 ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1𝑦 ) ) → ( 𝑥𝐴 → ( 𝑅1 ‘ ( 𝐹𝑥 ) ) ⊆ ( 𝑅1 ‘ suc ( 𝐹𝐴 ) ) ) )
30 29 imp ( ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1𝑦 ) ) ∧ 𝑥𝐴 ) → ( 𝑅1 ‘ ( 𝐹𝑥 ) ) ⊆ ( 𝑅1 ‘ suc ( 𝐹𝐴 ) ) )
31 14 2 fvmptg ( ( 𝑥 ∈ V ∧ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ∈ V ) → ( 𝐹𝑥 ) = { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } )
32 11 31 mpan ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ∈ V → ( 𝐹𝑥 ) = { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } )
33 9 32 sylbi ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ≠ ∅ → ( 𝐹𝑥 ) = { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } )
34 ssrab2 { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ⊆ On
35 onint ( ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ⊆ On ∧ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ≠ ∅ ) → { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ∈ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } )
36 34 35 mpan ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ≠ ∅ → { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ∈ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } )
37 33 36 eqeltrd ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ≠ ∅ → ( 𝐹𝑥 ) ∈ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } )
38 fveq2 ( 𝑦 = ( 𝐹𝑥 ) → ( 𝑅1𝑦 ) = ( 𝑅1 ‘ ( 𝐹𝑥 ) ) )
39 38 eleq2d ( 𝑦 = ( 𝐹𝑥 ) → ( 𝑥 ∈ ( 𝑅1𝑦 ) ↔ 𝑥 ∈ ( 𝑅1 ‘ ( 𝐹𝑥 ) ) ) )
40 5 cbvrabv { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } = { 𝑦 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑦 ) }
41 39 40 elrab2 ( ( 𝐹𝑥 ) ∈ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } ↔ ( ( 𝐹𝑥 ) ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ ( 𝐹𝑥 ) ) ) )
42 41 simprbi ( ( 𝐹𝑥 ) ∈ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1𝑣 ) } → 𝑥 ∈ ( 𝑅1 ‘ ( 𝐹𝑥 ) ) )
43 8 37 42 3syl ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1𝑦 ) ) → 𝑥 ∈ ( 𝑅1 ‘ ( 𝐹𝑥 ) ) )
44 43 adantr ( ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1𝑦 ) ) ∧ 𝑥𝐴 ) → 𝑥 ∈ ( 𝑅1 ‘ ( 𝐹𝑥 ) ) )
45 30 44 sseldd ( ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1𝑦 ) ) ∧ 𝑥𝐴 ) → 𝑥 ∈ ( 𝑅1 ‘ suc ( 𝐹𝐴 ) ) )
46 45 exp31 ( 𝑦 ∈ On → ( 𝑥 ∈ ( 𝑅1𝑦 ) → ( 𝑥𝐴𝑥 ∈ ( 𝑅1 ‘ suc ( 𝐹𝐴 ) ) ) ) )
47 46 com3r ( 𝑥𝐴 → ( 𝑦 ∈ On → ( 𝑥 ∈ ( 𝑅1𝑦 ) → 𝑥 ∈ ( 𝑅1 ‘ suc ( 𝐹𝐴 ) ) ) ) )
48 47 rexlimdv ( 𝑥𝐴 → ( ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1𝑦 ) → 𝑥 ∈ ( 𝑅1 ‘ suc ( 𝐹𝐴 ) ) ) )
49 48 ralimia ( ∀ 𝑥𝐴𝑦 ∈ On 𝑥 ∈ ( 𝑅1𝑦 ) → ∀ 𝑥𝐴 𝑥 ∈ ( 𝑅1 ‘ suc ( 𝐹𝐴 ) ) )
50 r1suc ( suc ( 𝐹𝐴 ) ∈ On → ( 𝑅1 ‘ suc suc ( 𝐹𝐴 ) ) = 𝒫 ( 𝑅1 ‘ suc ( 𝐹𝐴 ) ) )
51 22 50 ax-mp ( 𝑅1 ‘ suc suc ( 𝐹𝐴 ) ) = 𝒫 ( 𝑅1 ‘ suc ( 𝐹𝐴 ) )
52 51 eleq2i ( 𝐴 ∈ ( 𝑅1 ‘ suc suc ( 𝐹𝐴 ) ) ↔ 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc ( 𝐹𝐴 ) ) )
53 1 elpw ( 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc ( 𝐹𝐴 ) ) ↔ 𝐴 ⊆ ( 𝑅1 ‘ suc ( 𝐹𝐴 ) ) )
54 dfss3 ( 𝐴 ⊆ ( 𝑅1 ‘ suc ( 𝐹𝐴 ) ) ↔ ∀ 𝑥𝐴 𝑥 ∈ ( 𝑅1 ‘ suc ( 𝐹𝐴 ) ) )
55 52 53 54 3bitri ( 𝐴 ∈ ( 𝑅1 ‘ suc suc ( 𝐹𝐴 ) ) ↔ ∀ 𝑥𝐴 𝑥 ∈ ( 𝑅1 ‘ suc ( 𝐹𝐴 ) ) )
56 49 55 sylibr ( ∀ 𝑥𝐴𝑦 ∈ On 𝑥 ∈ ( 𝑅1𝑦 ) → 𝐴 ∈ ( 𝑅1 ‘ suc suc ( 𝐹𝐴 ) ) )